Abstract

Alpha-amylase is frequently used in technologies that require its immobilization, stabilization or encapsulation. Polyacrylic acid is a very suitable polymer for these purposes because it can bind to enzymes and then be released under certain conditions without altering the functional capacity of enzymes. The consequences produced by polyacrylic acid on alpha-amylase structure and function have been investigated through various techniques. Calorimetric measurements allowed examining the nature of the binding reaction, stoichiometry and affinity, while spectroscopic techniques provided additional information about functional and structural perturbations of the enzyme. Isothermal titration calorimetry (ITC) revealed a mixed interaction and a binding model with a large number of molecules of protein per molecule of polyacrylic acid. One the one hand circular dichroism (CD) spectroscopy showed that alpha-amylase loses its secondary structure in the presence of increasing concentrations of polyacrylic acid, while it is stabilized by the polyelectrolyte at low pH. On the other hand, fluorescence spectra revealed that the three-dimensional enzyme structure was not affected in the microenvironment of tryptophan residues. Differential scanning calorimetry (DSC) thermograms showed that only one domain of alpha-amylase is affected in its conformational stability by the polymer. The unfolding process proved to be partially reversible. Finally, the enzyme retained more than 90 % of its catalytic activity even in excess of the polymer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.