Abstract
The protein AUF1/hnRNP D was one of the first factors identified that binds to the AU-rich region of certain mRNAs and mediates their fast degradation. Here we describe experiments to address the structural determinants for the binding of AUF1 to the RNA by combining comparative molecular modeling with gel shift assays. From our model of the RNA binding region of AUF1 we predicted that it interacts with RNA predominantly through stacking interactions that do not provide base-specific recognition. Only two RNA positions bound by AUF1 show base preferences: one for pyrimidine bases and the second for a conserved adenine residue. Gel shift assays with a panel of RNA oligonucleotides largely confirmed these model-based binding determinants. An alignment with proteins of the hnRNP family demonstrated that the amino acids involved in the stacking interactions are conserved whereas those that confer a base-specific recognition in AUF1 are variable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.