Abstract

The mucopolysaccharide, hyaluronic acid, is an important component of both mammals and pathogenic streptococci. This high molecular weight polymer is synthesized by a membrane-associated, multisubunit hyaluronate synthase which utilizes UDP-glucuronic acid and UDP-N-acetylglucosamine as substrates. Using the photoaffinity probe, [beta-32P]5-azido-UDP-glucuronic acid, three streptococcal membrane proteins (42, 33, and 27 kDa) specifically photoincorporated this probe. Labeling of these proteins was enhanced in the presence of UDP-N-acetylglucosamine, whereas UDP-galactose or UDP-glucose had no effect on incorporation. UDP-glucuronic acid inhibited the labeling of the three proteins in a dose-dependent manner. Detergent-solubilized membrane proteins from transposon-inactivated hyaluronic acid capsule mutants no longer incorporated the probe. This was also the case when membranes from stationary phase organisms were tested. Finally, glucuronic acid no longer was incorporated into high molecular weight hyaluronic acid with either the mutant or stationary phase preparations. Further biochemical analysis will be required to demonstrate the exact role each of the proteins play in hyaluronic acid biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.