Abstract

Introduction. An Extended-Range Electric Vehicle (EREV) is a type of electric vehicle that uses an additional internal combustion engine (ICE) to charge the battery in order to provide the vehicle with a greater range than in electric only mode. Purpose. Analysis and comparison of the performance of EREV powertrain managed according to three control strategies: pure electric mode, hybrid mode with ICE constantly working, and hybrid mode with ICE working only at high power demand. Methods. The tests were carried out using a laboratory test stand that represented the structure of EREV powertrain. Liquefied petroleum gas was used as a fuel to supply the ICE. The test conditions were defined by a special driving cycle simulating urban driving. Results. Time series plots of selected parameters of electric motor, electrochemical battery pack, range extender generator and active load system. Practical value. Among the considered control strategies of EREV powertrain, the energy balance of the electrochemical battery is negative for a purely electric mode, significantly positive for continuous range extenders (REXs) operation mode and moderately positive for the mode with REX activation only in dynamic states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.