Abstract

The motion of the tippe top on a horizontal plane is considered taking into account sliding friction within the Contensou model. The tippe top is modelled by two spherical segments rigidly joined by a rod directed along the common axis of symmetry of the segments. The dimensions of the spherical segments and the rod are chosen so that, as the axis of symmetry deviates from the upward vertical, the tippe top is supported on the plane at a point on one segment up to a certain critical value and at a point on the other segment at larger deviations (at points on both segments at the critical value). The motion of the tippe top is described by different equations in different regions of configuration space, and the motion is accompanied by impacts on the boundary of these regions. An effective potential of the system is constructed, and the type of its critical points is investigated. Poincaré–Chetayev bifurcation diagrams and generalized Smale diagrams are constructed for steady motions. Plots of the steady-state precessional motions have a discontinuity on the boundary between the regions indicated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.