Abstract

Genome flanking regions surrounding transcription start sites (TSSs) are critical for the regulation of gene expression, containing many translational regulatory elements. To investigate whether critical single nucleotide polymorphisms (SNPs) exist around TSSs in the dairy goat genome, we performed high throughput DNA sequencing to compare two dairy goat groups with discrepant litter sizes. After genome mapping, SNP calling, and annotation, we screened the SNPs within 2kb scales surrounding annotated TSSs in high fecundity (HF) and low fecundity (LF) groups, respectively. We attempted to identify distinct SNPs and motifs near the TSSs in both groups. The SNPs near the TSSs most were consistent; 318 new SNPs were uncovered in the HF group, of which 305 were heterozygote SNPs, 13 were homozygote SNPs, and majority of which were distributed on chromosome 2 and 29. After validation by Sanger sequencing we found that a SNP in CHI16: 27612330 C>A in the PSEN2 gene presented an A/A genotype in the HF group and an A/A or A/C genotype in the LF group. In conclusion, our study provides insightful information into the dairy goat genomic variations surrounding TSSs, which may contribute to enhanced litter size. Based on comparison studies of SNPs exist around transcription start sites between high fecundity group and low fecundity group. Our finding provides insights concerning the goat litter size phenotypic and will promote future goat breeding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call