Abstract
Planar microelectrode arrays can be used to characterize the dynamics of networks of neurons reconstituted in vitro. In this paper simulations related to experiments of the electrical activity recording by means of planar arrays of microtransducers coupled to networks of neurons are described. First a detailed model of single and synaptically connected neurons is given, appropriate to computer simulate the action potentials of neuronal populations. Then `realistic' signals are generated. These signals are intended to reproduce, both in shape and intensity, those recorded by a microelectrode array. Typical experimental conditions are considered, and a detailed analysis given, of the bioelectronic coupling and of its influence on the shape of the recorded signals. Finally, simulated experiments dealing with dorsal root ganglia neurons are described and analysed in comparison with experimental results reported in the literature and obtained in our own laboratory. The effectiveness of the planar microelectrode technique is briefly discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.