Abstract
The objective of this paper is to numerically study the shock wave/boundary layer interaction and boundary layer separation. The first stage of this research is the development of methodology, flow simulations, and data analysis. When comparing the plots, it can be seen that the results of the check of the methodology were similar. Following, methodologies were developed and simulations were carried out considering the compression corner model. It was noticed that the shock wave could be identified by the jump on the pressure profile near the leading edge and by analyzing the thermodynamic properties of the plate. An increase in pressure, flow inversion, and boundary layer separation through negative values of the friction coefficient was observed, and negative speed at the wall was observed due to the presence of a plateau on the pressure curves. Flow expansion and further reattachment of the boundary layer were also seen. It is possible to observe type VI shock-shock interference and the triple point T, causing a series of expansion waves to form. Finally, an increase in the Mach number, a decrease in the corner compression angle, and a decrease in the wall temperature interfere and reduce the possibility of separating the boundary layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.