Abstract
The materials used in civil construction are undergoing significant advances to achieve reduced maintenance and increased durability. This study analyzed the self-cleaning potential of Glass fiber Reinforced Concrete (GRC) with the addition of titanium dioxide (TiO2) in contents of 3, 5, and 7% with respect to the mass of cement. We evaluated the self-cleaning GRC plates and the compressive and flexural strength of cylindrical and prismatic specimens. Prepared GRC sample plates were stained with dye solution (rhodamine B and methylene blue) and exposed to the four cardinal solar orientations of a building façade (north, south, east, and west) at different inclination angles (0°, 45°, and 90°) with respect to ground level. Results showed that the samples that presented the greatest performance were plates positioned in a north orientation and inclined at 0° in relation to ground level. The inclusion of TiO2 positively affected the consistency of the mixtures and improved the properties of the GRC in the hardened state. Measured rupture stresses were greater than 100 MPa in compressive strength and 20 MPa in flexure. The results of this study showed that the introduction of TiO2 in concrete with high strengths did have great relevance for the self-cleaning of white concrete.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.