Abstract

The gold contained in copper ores is an important resource for the gold industry. In some cases, elemental gold is present and can be recovered by selective flotation. It has been reported that the gold grade and recovery can be increased, without sacrificing the copper recovery, by replacing AERO 3477 (diisobutyl dithiophosphate (DTP)) with AERO 7249 (mixture of diisobutyl monothiophosphate (MTP) and diisobutyl dithiophosphate (DTP)) as the main collector. The fundamental understanding of the improvement in selectivity with the addition of MTP in the flotation of elemental gold from pyrite is limited and is the subject of this paper. In this regard, the hydrophobicity and selectivity of DTP and MTP in the flotation of pyrite and gold are compared and discussed. Density functional theory (DFT) was used to examine the electron density, reactivity, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) of the MTP and DTP collectors. The interaction energies for the adsorption of MTP and DTP from fresh pyrite, oxidized pyrite and gold surfaces were calculated and discussed with respect to the experimental results reported in the literature. Molecular dynamics simulation (MDS) was used to examine the adsorption state of MTP and DTP on the pyrite (100) and Au (111) surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call