Abstract
We study the Schwarz overlapping domain decomposition method applied to the Poisson problem on a special family of domains, which by construction consist of a union of a large number of fixed-size subdomains. These domains are motivated by applications in computational chemistry where the subdomains consist of van der Waals balls. As is usual in the theory of domain decomposition methods, the rate of convergence of the Schwarz method is related to a stable subspace decomposition. We derive such a stable decomposition for this family of domains and analyze how the stability "constant" depends on relevant geometric properties of the domain. For this, we introduce new descriptors that are used to formalize the geometry for the family of domains. We show how, for an increasing number of subdomains, the rate of convergence of the Schwarz method depends on specific local geometry descriptors and on one global geometry descriptor. The analysis also naturally provides lower bounds in terms of the descriptors for the smallest eigenvalue of the Laplace eigenvalue problem for this family of domains.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.