Abstract
This paper is concerned with the mathematical analysis of the solution for the wave propagation from the scattering by an unbounded penetrable rough surface. Throughout, the wavenumber is assumed to have a nonzero imaginary part that accounts for the energy absorption. The scattering problem is modeled as a boundary value problem governed by the Helmholtz equation with transparent boundary conditions proposed on plane surfaces confining the scattering surface. The existence and uniqueness of the weak solution for the model problem are established by using a variational approach. Furthermore, the scattering problem is investigated for the case when the scattering profile is a sufficiently small and smooth deformation of a plane surface. Under this assumption, the problem is equivalently formulated into a set of two‐point boundary value problems in the frequency domain, and the analytical solution, in the form of an infinite series, is deduced by using a boundary perturbation technique combined with the transformed field expansion approach. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.