Abstract

To study the molecular mechanism of salt stress response of peanut small GTP binding protein gene AhRabG3f, a 1 914 bp promoter fragment upstream of the start codon of AhRabG3f gene (3f-P) from peanut was cloned. Subsequently, five truncated fragments (3f-P1-3f-P5) with lengths of 1 729, 1 379, 666, 510 and 179 bp were obtained through deletion at the 5' end, respectively. Plant expression vectors where these six promoter fragments were fused with the gus gene were constructed and transformed into tobacco by Agrobacterium-mediated method, respectively. GUS expression in transgenic tobacco and activity analysis were conducted. The gus gene expression can be detected in the transgenic tobacco harboring each promoter segment, among which the driving activity of the full-length promoter 3f-P was the weakest, while the driving activity of the promoter segment 3f-P3 was the strongest. Upon exposure of the transgenic tobacco to salt stress, the GUS activity driven by 3f-P, 3f-P1, 3f-P2 and 3f-P3 was 3.3, 1.2, 1.9 and 1.2 times compared to that of the transgenic plants without salt treatment. This suggests that the AhRabG3f promoter was salt-inducible and there might be positive regulatory elements between 3f-P and 3f-P3 in response to salt stress. The results of GUS activity driven by promoter fragments after salt treatment showed that elements included MYB and GT1 between 1 930 bp and 1 745 bp. Moreover, a TC-rich repeat between 682 bp and 526 bp might be positive cis-elements responsible for salt stress, and an MYC element between 1 395 bp and 682 bp might be a negative cis-element responsible for salt stress. This study may facilitate using the induced promoter to regulate the salt resistance of peanut.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.