Abstract

Saliva is known to play a crucial role in insect feeding behavior and virus transmission. Currently, little is known about the salivary glands and saliva of thrips, despite the fact that Frankliniella occidentalis (Pergande) (the western flower thrips) is a serious pest due to its destructive feeding, wide host range, and transmission of tospoviruses. As a first step towards characterizing thrips salivary gland functions, we sequenced the transcriptome of the primary salivary glands of F. occidentalis using short read sequencing (Illumina) technology. A de novo-assembled transcriptome revealed 31,392 high quality contigs with an average size of 605 bp. A total of 12,166 contigs had significant BLASTx or tBLASTx hits (E≤1.0E−6) to known proteins, whereas a high percentage (61.24%) of contigs had no apparent protein or nucleotide hits. Comparison of the F. occidentalis salivary gland transcriptome (sialotranscriptome) against a published F. occidentalis full body transcriptome assembled from Roche-454 reads revealed several contigs with putative annotations associated with salivary gland functions. KEGG pathway analysis of the sialotranscriptome revealed that the majority (18 out of the top 20 predicted KEGG pathways) of the salivary gland contig sequences match proteins involved in metabolism. We identified several genes likely to be involved in detoxification and inhibition of plant defense responses including aldehyde dehydrogenase, metalloprotease, glucose oxidase, glucose dehydrogenase, and regucalcin. We also identified several genes that may play a role in the extra-oral digestion of plant structural tissues including β-glucosidase and pectin lyase; and the extra-oral digestion of sugars, including α-amylase, maltase, sucrase, and α-glucosidase. This is the first analysis of a sialotranscriptome for any Thysanopteran species and it provides a foundational tool to further our understanding of how thrips interact with their plant hosts and the viruses they transmit.

Highlights

  • A diverse range of salivary components are known to play a crucial role in the successful feeding of phytophagous insects

  • The thrips sialotranscriptome we describe provides a foundational view of thrips salivary components essential to understanding how thrips feed and interact with tospoviruses

  • Five contigs mapped to the three genome segments of Tomato spotted wilt virus, with almost complete coverage of the full length of each genome segment (Table 3)

Read more

Summary

Introduction

A diverse range of salivary components are known to play a crucial role in the successful feeding of phytophagous insects. Regardless of the specific feeding strategy used, insect saliva is secreted for the suppression and detoxification of plant defense responses and the extra-oral digestion of plant tissues. Polygalacturonases secreted by Lygus bugs, which have piercing/sucking mouthparts and utilize a cell rupture feeding strategy, enzymatically digest plant tissues for subsequent ingestion [5]. Knowledge of salivary secretions is crucial to understanding how insects interact with their host plants and a deep understanding of insect-plant interactions will facilitate the development of better pest control strategies. Despite their importance as pests, there is currently little known about the secretion and composition of thrips saliva

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.