Abstract

Mitochondrial DNA recombination was reduced in an yeast mutant lacking the NUC1 endo/exonuclease. Between linked markers in either the omega or cob region the frequency of recombination decreased nearly 50% compared to wild-type. Gene conversion frequencies in the var1 gene and in the omega region were also lower in the mutant strain. In particular, the gradient of gene conversion at omega was most affected by the absence of the NUC1 nuclease. In crosses between nuclease-deficient and wild-type strains, gene conversion frequencies at omega were reduced only when the omega+ allele was contributed to the zygote by the nuclease-deficient parent. We propose that the 5' exonuclease activity of the NUC1 nuclease functions during recombination to enlarge heteroduplex tracts following a double-strand break in DNA. In crosses between nuclease-deficient and wild-type strains, the anisotropy in gene conversion frequencies at omega is hypothesized to be due to the slow mixing of parental mitochondrial membranes as they fuse in the zygote.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.