Abstract

The global regulatory two-component system CovR/S controls expression of about 15% of the Streptococcus pyogenes (group A streptococcus; GAS) genome. Recently, we found that CovS plays a pivotal role in general stress response of this strictly human pathogen. Therefore, we expected that both CovS and CovR might affect virulence. In this work, mice were inoculated subcutaneously with isogenic nonpolar covR and covS deletion–substitution mutants and the isogenic wild-type strain. The covS mutant behaved like the wild-type parental strain in terms of resulting lesion appearance and invasive disease leading to death. This is in agreement with previous results suggesting that the absence of its cognate sensor kinase does not affect the ability of CovR to become phosphorylated and cause repression of its regulon. However, two different covR deletion–substitution mutants caused significantly less invasive disease and death in the mice than the wild-type parental strain, although the local lesions produced by the covR mutants were more severe and purulent than those resulting from the wild-type GAS strain. Thus, it appears that production of CovR increases the ability of S. pyogenes to cause severe invasive disease in this mouse model and therefore is an important virulence factor for this organism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.