Abstract
RNA binding proteins (RBPs) are typically involved in non-equilibrium cellular processes, and specificity can arise from differences in ground state, transition state, or product states of the binding reactions for alternative RNAs. Here, we use high-throughput methods to measure and analyze the RNA association kinetics and equilibrium binding affinity for all possible sequence combinations in the precursor tRNA binding site of C5, the essential protein subunit of Escherichia coli RNase P. The results show that the RNA sequence specificity of C5 arises due to favorable RNA-protein interactions that stabilize the transition state for association and bound enzyme-substrate complex. Specificity is further impacted by unfavorable RNA structure involving the C5 binding site in the ground state. The results illustrate a comprehensive quantitative approach for analysis of RNA binding specificity, and show how both RNA structure and sequence preferences of an essential protein subunit direct the specificity of a ribonucleoprotein enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.