Abstract
This article presents the main statements of the method of approximation of discontinuous functions of two variables, describing an image of the surface of a 2D body or an image of the internal structure of a 3D body in a certain plane, using projections that come from a computer tomograph. The method is based on the use of discontinuous splines of two variables and finite Fourier sums, in which the Fourier coefficients are found using projection data. The method is based on the following idea: an approximated discontinuous function is replaced by the sum of two functions – a discontinuous spline and a continuous or differentiable function. A method is proposed for constructing a spline function, which has on the indicated lines the same discontinuities of the first kind as the approximated discontinuous function, and a method for finding the Fourier coefficients of the indicated continuous or differentiable function. That is, the difference between the function being approximated and the specified discontinuous spline is a function that can be approximated by finite Fourier sums without the Gibbs phenomenon. In the numerical experiment, it was assumed that the approximated function has discontinuities of the first kind on a given system of circles and ellipses nested into each other. The analysis of the calculation results showed their correspondence to the theoretical statements of the work. The proposed method makes it possible to obtain a given approximation accuracy with a smaller number of projections, that is, with less irradiation.
Highlights
Sp x, y ; сформована з допомогою цих функцій неперервна функція x, y та відповідне її наближення N x, y сумами Фур’є порядку N .
1. Вважаємо лінії розриву функції f x, y відомими.
3. Відновлюємо функцію x, y за методом скінченних сум Фур’є [4].
Summary
Sp x, y ; сформована з допомогою цих функцій неперервна функція x, y та відповідне її наближення N x, y сумами Фур’є порядку N . 1. Вважаємо лінії розриву функції f x, y відомими. 3. Відновлюємо функцію x, y за методом скінченних сум Фур’є [4]. Враховуючи, що ця функція не має розривів, її можна наближувати з допомогою відповідних сум Фур’є без явища Гіббса.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physico-mathematical modelling and informational technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.