Abstract

Plant protection unmanned aerial vehicles (UAVs), which are highly adapted to terrain and capable of efficient low-altitude spraying, will be extensively used in agricultural production. In this paper, single or several independent factors influencing the deposition characteristics of droplets sprayed by plant protection UAVs, as well as the experimental methods and related mathematical analysis models used to study droplet deposition and drift, are systematically investigated. A research method based on farmland environmental factors is proposed to simulate the deposition and drift characteristics of spray droplets. Moreover, the impacts of multiple factors on the droplet deposition characteristics are further studied by using an indoor simulation test system for the spraying flow field of plant protection UAVs to simulate the plant protection UAVs spraying flow field, temperature, humidity and natural wind. By integrating the operation parameters, environmental conditions, crop canopy characteristics and rotor airflow, the main effects and interactive effects of the factors influencing the deposition of spray droplets can be explored. A mathematical model that can reflect the internal relations of multiple factors and evaluate and analyze the droplet deposition characteristics is established. A scientific and effective method for determining the optimal spray droplet deposition is also proposed. In addition, this research method can provide a necessary scientific basis for the formulation of operating standards for plant protection UAVs, inspection and evaluation of operating tools at the same scale, and the improvement and upgrading of spraying systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call