Abstract

Voltage dependant calcium channels (VDCC) play a critical role in coupling electrical excitability to important physiological events such as secretion by neuronal and endocrine cells. Rem2, a GTPase restricted to neuroendocrine cell types, regulates VDCC activity by a mechanism that involves interaction with the VDCC β subunit (Ca Vβ). Mapping studies reveal that Rem2 binds to the guanylate kinase domain (GK) of the Ca Vβ subunit that also contains the high affinity binding site for the pore forming and voltage sensing VDCC α subunit (Ca Vα) interaction domain (AID). Moreover, fine mapping indicates that Rem2 binds to the GK domain in a region distinct from the AID interaction site, and competitive inhibition studies reveal that Rem2 does not disrupt Ca Vα - Ca Vβ binding. Instead, the Ca Vβ subunit appears to serve a scaffolding function, simultaneously binding both Rem2 and AID. Previous studies have found that in addition to Ca Vβ binding, Rem2 must be localized to the plasma membrane to inhibit VDCC function. Plasma membrane localization requires the C-terminus of Rem2 and binding studies indicate that this domain directs phosphorylated phosphatidylinositide (PIP) lipids association. Plasma membrane localization may provide a unique point of regulation since the ability of Rem2 to bind PIP lipids is inhibited by the phosphoserine dependant binding of 14-3-3 proteins. Thus, in addition to Ca Vβ binding, VDCC blockade by Rem2 is likely to be controlled by both the localized concentration of membrane PIP lipids and direct 14-3-3 binding to the Rem2 C-terminus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.