Abstract
Neisseria meningitidis is the major cause of septicemia and meningococcal meningitis. During the course of infection, the bacterium must adapt to different host environments as a crucial factor for survival and dissemination; in particular, one of the crucial factors in N. meningitidis pathogenesis is the ability to grow and survive in human blood. We recently showed that N. meningitidis alters the expression of 30% of the open reading frames (ORFs) of the genome during incubation in human whole blood and suggested the presence of fine regulation at the gene expression level in order to control this step of pathogenesis. In this work, we used a customized tiling oligonucleotide microarray to define the changes in the whole transcriptional profile of N. meningitidis in a time course experiment of ex vivo bacteremia by incubating bacteria in human whole blood and then recovering RNA at different time points. The application of a newly developed bioinformatic tool to the tiling array data set allowed the identification of new transcripts--small intergenic RNAs, cis-encoded antisense RNAs, mRNAs with extended 5' and 3' untranslated regions (UTRs), and operons--differentially expressed in human blood. Here, we report a panel of expressed small RNAs, some of which can potentially regulate genes involved in bacterial metabolism, and we show, for the first time in N. meningitidis, extensive antisense transcription activity. This analysis suggests the presence of a circuit of regulatory RNA elements used by N. meningitidis to adapt to proliferate in human blood that is worthy of further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.