Abstract

ABSTRACT We report results on the joint-fit of the NuSTAR and HXMT data for the black hole X-ray binary candidate MAXI J1535-571. The observations were obtained in 2017 when the source evolved through the hard, hard-intermediate, and soft-intermediate states over the rising phase of the outburst. After subtracting continuum components, X-ray reflection signatures are clearly showed in those observations. By modelling the relativistic reflection in detail, we find that the inner radius Rin is relatively stable with Rin ≲ 1.55Rg during the three states, which implies that the inner radius likely extends to the innermost stable circular orbit even in the bright hard state. When adopting Rin = RISCO, the spin parameter is constrained to be $0.985_{-0.004}^{+0.002}$ at 90 per cent confidence (statistical only). The best-fitting results reveal that the inclination of the inner accretion disc is ∼70–74 deg, which notably conflicts with the apparent orientation of the ballistic jet (≤45 deg). In addition, both the photon index and the electron temperature increase during the transition from hard to soft state. It seems that the corona evolves from dense low-temperature in the low/hard state to tenuous high-temperature after the state transition, which indicates that the state transition is accompanied by the evolution of the coronal properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call