Abstract
The mechanism by which double-strand DNA breaks are repaired in the radiation-resistant bacterium Deinococcus radiodurans is not well understood. This organism lacks the RecBCD helicase/nuclease, which processes broken DNA ends in other bacteria. The RecF pathway is an alternative pathway for recombination and DNA repair in E. coli, when RecBCD is absent due to mutation, and D. radiodurans may rely on enzymes of this pathway for double-strand break repair. The RecJ exonuclease is thought to process broken DNA ends for the RecF pathway. We attempted to delete the recJ gene from D. radiodurans, using homologous recombination to replace the gene with a streptomycin-resistance cassette. We were unable to obtain a complete deletion mutant, in which the gene is deleted from all of the chromosome copies in this polyploid organism. Quantitative real-time PCR shows that the heterozygous mutants have a recJ gene copy that is ca. 10–30% that of the wild-type. Mutants with reduced recJ gene copy grow slowly and are more sensitive than wild-type to UV irradiation, gamma irradiation, and hydrogen peroxide. The mutants are as resistant as wild-type to methyl-methanesulfonate. The D. radiodurans RecJ protein was expressed in E. coli and purified under denaturing conditions. The re-folded protein has nuclease activity on single-stranded DNA with specificity similar to that of E. coli RecJ exonuclease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.