Abstract

An attempt was made to analyze the reaction of carbon with NO or N2O by using an ab initio molecular orbital theory. This method allows the simulation of the chemisorption process of these gas molecules on zigzag and armchair edge sites of carbon. It was found that NO adsorption with the N atom down is more thermally favorable than the adsorption with the O atom down, while the O down mode is more favorable than the N down one for N2O adsorption because the former process releases a stable N2 molecule to form a surface oxygen complex. The chemisorption of NO or N2O with its bond axis parallel to the edge line gave the most stable chemisorbed species. The presence of surface oxygen complexes (quinone-type carbonyl group) on the edge decreases the strength of some bonds in NO- and N2O-chemisorbed species and consequently lowers their thermal stability. Furthermore, the N2 formation process in the C−NO/N2O reaction was analyzed and possible N2 formation routes were proposed. The routes predicted by the molec...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.