Abstract
As the quality of microarrays is critical to successful experiments for data consistency and validity, a reliable and convenient quality control method is needed. We describe a systematic quality control method for large-scale genome oligonucleotide arrays. This method is comprised of three steps to assess the quality of printed arrays. The first step involves assessment of the autofluorescence property of DNA. This step is convenient, quick to perform, and allowed reuse of every array. The second step involves hybridization of arrays with Cy3-labeled 9-mer oligonucleotide target to assess the quality and stability of oligonucleotides. Because this step consumed arrays, one or two arrays from each batch were used to complement the quality control data from autofluorescence. The third step involves hybridization of arrays from every batch with transcripts derived from two cell lines to assess data consistency. These hybridizations were able to distinguish two closely related tissue samples by identifying a cluster of 20 genes that were differently expressed in U87MG and T98G glioblastoma cell lines. In addition, we standardized two parameters that significantly enhanced the quality of arrays. We found that longer pin contact time and crosslinking oligonucleotides at 400 mJ/cm(2) were optimal for the highest hybridization intensity. Taken together, these results indicate that the quality of spotted oligonucleotide arrays should be assessed by at least two methods, autofluorescence and 9-mer hybridization before arrays are used for hybridization experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.