Abstract

Pyramidalization at the peptide group nitrogen atom is analyzed using N-methylacetamide (NMA) as a model molecule. Mutually orthogonal peptide CN torsion and NH out-of-plane bend coordinates are necessary for a correct description of the energetics of nonplanar deformations of the peptide group. Using such coordinates, ab initio calculations at the MP2/6-31++G(d,p) level of theory show that the energy minimum of the NH out-of-plane bend angle shifts significantly away from zero for nonzero CN torsion angles. Not being due to nonbonded interactions alone, this energy behavior needs to be taken explicitly into account in molecular mechanics force fields. By use of different schemes for calculating potential-derived atomic charges, the charge distribution of NMA was also investigated in connection with the pyramidalization. Large variations in the charges were found as a function of the NH out-of-plane angle. These could not be reproduced only by polarization through the (molecular mechanics) electric field. An enhanced electrostatic model, using geometry-dependent charges (charge fluxes) is shown to provide a satisfactory physical description of this effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.