Abstract

Center-surround antagonistic receptive field in the retina is generated by negative feedback from horizontal cells (HCs) via a proton feedback mechanism [1]. In this study, the contribution of protons on the color opponent signal formation is analyzed. Increasing the buffer capacity of the external medium by 10 mM HEPES depolarized the dark membrane potential of HCs, and substantially increased hyperpolarizing responses to light stimulation. In contrast, feedback mediated depolarizing responses of H2 and H3 HCs were suppressed by HEPES. Moreover, depolarizing response onset of H2 and H3 HCs was significantly delayed compared to the hyperpolarizing responses. These indicate that proton plays an important role on the color opponent signal formation of HCs, and that the feedback from H1 to H2 HCS is delayed by 10 – 20 ms. A similar delay might be applicable to other feedback pathways as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.