Abstract

We present the properties of soft morphological operations and the new definitions of binary soft morphological operations. It is shown that soft morphological filtering an arbitrary signal is equivalent to decomposing the signal into binary signals, filtering each binary signal with a binary soft morphological filter, and then reversing the decomposition. This equivalence allows problems in the analysis and the implementation of soft morphological operations in real time by using only logic gates for binary signals instead of sorting the numbers. The architectures of logic-gate implementation of soft morphological operations are also presented. Furthermore, unlike standard morphological filters, the soft morphological closing and opening are in general not idempotent. We develop the conditions and properties for a new class of idempotent soft morphological filters. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.