Abstract
The regions surrounding the North West Mediterranean Sea are often sites of intense precipitation events, particularly during the autumn months. The many casualties and the high economic costs due to these events demand a continuous improvement in forecasting models in support of early warning systems. The main weather conditions that determine episodes of heavy rain over these regions are known, but the high number of processes and interactions taking place at different time and space scales makes it extremely difficult to increase the skill pertaining to their predictability. To deepen the knowledge of the phenomena, both numerical simulations and analysis of historical data sets are required. This paper presents the analysis of a five-year-long time series of rain data collected in the open Ligurian Sea from the fixed platform W1M3A and coastal stations. The analysis aims to characterize the main features of the precipitation over this area and its seasonal and annual variability. Furthermore, the work includes a description of the main atmospheric and oceanic surface parameters measured from the platform during some intense events that occurred in the period 2009–2013 and suggests to what extent offshore observations may contribute to improve the forecast of rainfall events.
Highlights
IntroductionOwing to its geographic position and complex orography, the Liguria region is recurrently affected by intense precipitation
The Liguria region delimits the North West Mediterranean Sea and it is characterized by the presence of mountains over 2000 m high at only few kilometres away from the coastline that give rise to several catchments with steep slopes and limited extension.Owing to its geographic position and complex orography, the Liguria region is recurrently affected by intense precipitation
The analysis aims to characterize the main features of the precipitation over this area and its seasonal and annual variability
Summary
Owing to its geographic position and complex orography, the Liguria region is recurrently affected by intense precipitation. Since this area is densely populated, the consequences of these types of events are very dramatic with loss of lives and huge economic damage. Reliable forecasts can mitigate these catastrophic effects, and there is a constant effort for a continuous improvement in forecasting models in support of the development of early warning systems. The main meteorological causes supporting high precipitations events (HPEs, hereafter) are quite well known: a frontal system or a mesoscale convective system (MCS, hereafter), sometimes combined each other [1,2]. Convective systems are often self-regenerating and persist over the same area for several hours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.