Abstract

We previously developed a novel quantitative microsphere suspension hybridization (QMH) assay for high-throughput determination of genomic copy number by direct hybridization of unique sequence probes to genomic DNA followed by flow cytometric analysis. Herein, we describe the first clinical application of this assay examining the Prader-Willi syndrome (PWS) chromosome region at 15q11-13. We designed 30 unique sequence test probes (approximately 60 nucleotides each) spanning 11.37 Mb of chromosome 15q11.2-q13.3 and a disomic reference probe (Actin Beta, chromosome 7p22.1), conjugated to spectrally distinct polystyrene microsphere levels. All probes were hybridized to biotin-labeled genomic DNA in multiplex QMH reactions, and hybridization was detected using phycoerythrin-labeled streptavidin and analyzed by dual-laser flow cytometry. Copy number differences were distinguished by comparing mean fluorescence intensities (MFI) of the test probes to the reference probe in 20 individuals with PWS and six controls. The mean MFI ratio for deleted loci was 0.56 +/- 0.09 (n = 88) as compared to the MFI ratios for normal loci, 0.96 +/- 0.06 (n = 236), and duplicated loci, 1.44 +/- 0.10 (n = 22). A multiplex QMH assay could readily distinguish type I from type II deletions in PWS subjects, as well as small (approximately 4.3 kb) imprinting center (IC) deletions, with no overlap in MFI values compared with normal loci. Using this diagnostic QMH assay, the precise deleted genomic interval could be ascertained in all PWS subjects examined in the present study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.