Abstract
Verticillium wilt in cotton (Gossypium hirsutum) is primarily caused by Verticillium dahliae. Previous data suggest that prenylated RAB acceptors (PRAs) play essential roles in environmental plant adaptation, although the potential roles of PRA1 in cotton are unclear. Therefore, in this study, PRA1 family members were identified in G. hirsutum, and their roles in biotic and abiotic stresses were analyzed. Thirty-seven GhPRA1 family members were identified in upland cotton, which were divided into eight groups. Gene structure and domain analyses revealed that the sequences of GhPRA1 members in each group were highly conserved. Many environmental stress-related and hormone-response cis-acting elements were identified in the GhPRA1 promoter regions, indicating that they may respond to biotic and abiotic stresses. Expression analysis revealed that GhPRA1 members were widely expressed in upland cotton. The GhPRA1 genes responded to abiotic stress: drought, cold, salt, and heat stress. GhPRA1.B1-1A expression increased after V. dahliae infection. Furthermore, the functional role of GhPRA1.B1-1A was confirmed by overexpression in Arabidopsis thaliana, which enhanced the resistance to V. dahliae. In contrast, V. dahliae resistance was significantly weakened via virus-induced gene silencing of GhPRA1.B1-1A in upland cotton. Simultaneously, reactive oxygen species accumulation; the H2O2, salicylic acid, and jasmonic acid contents; and callose deposition were significantly decreased in cotton plants with GhPRA1.B1-1A silencing. These findings contribute to a better understanding of the biological roles of GhPRA1 proteins and provide candidate genes for cotton breeders for breeding V. dahliae-resistant cultivars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.