Abstract
The intrinsic photophysical properties of the resorcylic acid moiety of zearalenone offer a convenient label free method to determine zearalenone levels in contaminated agricultural products. Steady-state fluorescence and density functional methods were applied to investigate the role of structural chemistry on zearalenone detection. Geometry optimization calculations using the B3LYP density functional identified a tautomeric form of zearalenone. Excited state geometries for zearalenone and a tautomeric form were obtained by MNDO semi-empirical optimizations. Steady-state fluorescence studies suggest that fluorescence quenching at neutral pH is associated with water interactions. Time-dependent density functional and ground state calculations indicate that the anionic and dianionic forms of zearalenone possess lower band gaps, excitation energies, and the lowest unoccupied molecular orbitals are positioned over the non-fluorophoric portion of zearalenone. These results suggest that deprotonation of one or more of the phenolic hydroxyls diminishes the intensity of the fluorescence emission of zearalenone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.