Abstract
A fungal phytotoxin fusicoccin (FC) causes irreversible opening of stomata by activation of the plasma membrane H+-ATPase in guard cells. However, the mechanism by which FC activates the H+-ATPase is not fully understood with respect to the event of phosphorylation. In this study, we provide quantitative evidence that FC-dependent activation of H+-ATPase requires the phosphorylation of the C-terminus, and that FC maintains the activated state by preventing the dephosphorylation. The plasma membrane H+-ATPase in guard cells was phosphorylated on serine and threonine residues in the C-termini of both VHA1 and VHA2 by FC, and the phosphorylation level paralleled the rates of H+-pumping and ATP hydrolysis. An endogenous 14-3-3 protein was co-precipitated with the H+-ATPase, and the amount of 14-3-3 protein was proportional to the phosphorylation level of H+-ATPASE: The recombinant 14-3-3 protein bound to the C-terminus only when it was phosphorylated, even in the presence of FC. The phosphorylated C-terminus was dephosphorylated by alkaline phosphatase, and the dephosphorylation was completely prevented when the C-terminus had been incubated with both FC and 14-3-3 protein. The results suggest that FC activates the H+-ATPase by accumulating the complex of phosphorylated H+-ATPase and 14-3-3 protein through inhibition of the dephosphorylation in guard cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.