Abstract

Folate reabsorption by the mammalian kidney occurs following a tight binding reaction with the renal brush border membrane. Previous studies have shown that transport of folic acid (PteGlu) by rat kidney brush border membrane vesicles occurs maximally at pH 5.6 via a saturable system that is associated with a binding component. The present studies have shown that the pH dependency of transport was due to the development of the transmembrane pH gradient (7.3 in/5.6 out), not to the acidic pH per se. The pH gradient-mediated transport was stimulated by an inwardly directed ionic gradient, either of NaCl or choline chloride. These gradients also stimulated the membrane binding of PteGlu suggesting that NaCl and choline chloride may have increased PteGlu transport by altering binding to the brush border membrane. Renal brush border membrane vesicular transport of PteGlu was not affected by induction of a relatively positive intravesicular space. Transport was inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene, an anion exchange inhibitor. The results suggest that rat kidney brush border membrane transport of PteGlu is initiated by association with a specific membrane protein, followed by transfer of folate across the membrane. The overall activity is influenced by a transmembrane pH gradient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call