Abstract
In this paper, we study the dynamics of an SIR epidemic model with a logistic process and a distributed time delay. We first show that the attractivity of the disease-free equilibrium is completely determined by a threshold R0. If R0⩽1, then the disease-free equilibrium is globally attractive and the disease always dies out. Otherwise, if R0>1, then the disease-free equilibrium is unstable, and meanwhile there exists uniquely an endemic equilibrium. We then prove that for any time delay h>0, the delayed SIR epidemic model is permanent if and only if there exists an endemic equilibrium. In other words, R0>1 is a necessary and sufficient condition for the permanence of the epidemic model. Numerical examples are given to illustrate the theoretical results. We also make a distinction between the dynamics of the distributed time delay system and the discrete time delay system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Nonlinear Science and Numerical Simulation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.