Abstract

The concentration of solar radiation by either a lens or a mirror is one of the options for practical utilisation of light to obtain higher temperatures. However, it is difficult to maintain high temperatures on the hot side of the module due to solar diurnal motion. This study evaluates the influence of the thermoelectric (TE) output by optical light concentration. Three-dimensional partial differential equations describing heat balance and TE phenomena were simultaneously solved by applying numerical methods, and the temperature distribution in the whole TE module as well as the current density were simulated. It was shown that the three models of light concentration on a single TE module (BiTe-based, four legs having dimensions of 10 mm × 10 mm × 10 mm) generate a similar output in the external load. This happens because the long leg becomes a large thermal resistance, and because the alumina plate (1 mm thick) with a high thermal conductivity covers the top of the TE modules. The homogenised temperature at the hot junctions generates a similar output in all three models when the cold terminals were kept at constant temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call