Abstract
We fabricated 1.55-/spl mu/m tensile strained InGaAs quantum-well (QW) lasers into broad-area and ridge waveguide lasers, and their performance was analyzed and compared with compressive strained and lattice-matched QW lasers. It is seen that the limitation on the tensile strain to a value less than 0.7%, which is required to prevent the emission wavelength being shorter than 1.55 /spl mu/m, imposes restrictions on the performance enhancement in several aspects. Broad-area InGaAs QW lasers with a tensile strain of 0.7% show a larger gain coefficient and smaller transparency current density per well than those with InGaAsP QW lasers with a compressive strain of 1.0%. However, the internal quantum efficiency is much smaller than that for compressive ones and the internal optical loss increases rapidly as the number of QW's increases. These are thought to be caused by a smaller conduction band offset and the onset of dislocation generation at the well-barrier interfaces with the number of QW's, respectively. Ridge waveguide lasers with two QW's with tensile strain of 0.7%, which is designed not to exceed the critical thickness for dislocation generation, show smaller modal gain coefficients and inferior temperature characteristics as compared to those with six 0.7% compressive strained QW's and those with three lattice matched InGaAs QW's. However, the modulation bandwidth is measured to be larger than that for one that is compressively strained. It is believed to originate from the small effective capture time of the carriers due to thicker wells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.