Abstract

The performance of solar energy production systems consisting of photovoltaic solar panels strongly depends on the location and orientation of the solar panels. Previously a computational model has been developed to predict this performance depending on location and orientation; this model allows for prior analysis of a PV system before it is actually built. In the current paper the performance of solar panels according to their location and orientation is analyzed based on empirical real world performance data, and compared to the data generated by the previously developed computational model. These empirical data have been collected from a number of solar panels at different locations and orientations day-by-day and panel-by-panel for a whole year. The data is analyzed and used to deepen the prior analysis, and to evaluate the computational model thereby generating suggestions for improvement of this model. These suggestions are a basis for an improved computational model in order to enhance the quality of prior analysis of a PV system before it is actually built. Such a pre-analysis is useful as a support for decision making by estimating how much loss different options for locations will have, before actually placing the solar panels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.