Abstract

The passive mechanical properties of rat carotid arteries were studied in vitro. Using a tensile testing machine and a piston pump, intact segments of carotid arteries were subjected to large deformations both in the longitudinal and circumferential directions. Internal pressure, external diameter, length and longitudinal force were measured during the experiment and compared with the in vivo dimensions of the segments prior to excision. The anisotropic mechanical properties of the vessel wall material were analyzed using incremental elastic moduli and incremental Poisson's ratios. The results suggest that there is a characteristic deformation pattern common to all vessels investigated which is highly correlated with the conditions of loading that occur in vivo. That is, under average physiological deformation of the vessel, the longitudinal force is nearly independent of internal pressure. In this range of loading the circumferential incremental elastic modulus is nearly independent of longitudinal strain. However, the longitudinal and radial incremental elastic moduli vary significantly with deformation in this direction. The values of the moduli in all three directions increase with raising internal pressure. The weak coupling between circumferential and longitudinal direction in the wall material of carotid arteries is shown by the small value of the corresponding incremental Poisson's ratios.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call