Abstract
Application of the tailored pulse sequences like super-WEFT allows the direct observation of the hyperfine-shifted signals of the paramagnetic Cu(II) forms of blue copper proteins in solution. The signals can be assigned by applying 2D NMR techniques, like EXSY, to solutions containing a mixture of reduced and oxidized species. The Fermi contact shift is separated from the pseudocontact shift on the basis of the known g-tensor anisotropy of the Cu(II) state, allowing the determination of a number of hyperfine-splitting constants between protons on the Cu ligands and the unpaired electron. These results are used to quantify the spin density distribution over the Cu ligands. In amicyanin about 50%-60% of the unpaired electron density is found on the ligands. It appears possible to quantify the Cu-S(Met) interaction on the basis of the NMR results. Application of the technique to the wild type forms of amicyanin and azurin and to two active site mutants of amicyanin (His96Asp and a plastocyanin-amicyanin loop exchange mutant) shows that the Cu-S(Met) interaction parallels the rhombicity and axial distortion of the Cu site.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.