Abstract

According to classical theory, one level Schwarz methods applied to elliptic problems are not scalable in general [A. Toselli and O. Widlund, Springer Ser. Comput. Math., 34, Springer, New York, 2005]. This means that their convergence deteriorates when the number of subdomains increases. In contrast to this classical result, it was observed numerically in [E. Cancès, Y. Maday, and B. Stamm, J. Chem. Phys., 139 (2013), 054111; F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys., 141 (2014), 184108; F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, J. Chem. Theory Comput., 9 (2013), pp. 3637--3648] that in some cases the convergence of the one level Schwarz method does not depend on the number of subdomains. This happens for molecular problems where the domain of definition of the linear elliptic partial differential equation is the union of spherical van der Waal's cavities centered at the atomic position of the molecule. In this case, the computations can naturally be performed using Schwarz methods, where each atom of the molecule corresponds to a subdomain, see [E. Cancès, Y. Maday, and B. Stamm, J. Chem. Phys., 139 (2013), 054111; F. Lipparini, G. Scalmani, L. Lagardère, B. Stamm, E. Cancès, Y. Maday, J.-P. Piquemal, M. J. Frisch, and B. Mennucci, J. Chem. Phys., 141 (2014), 184108; F. Lipparini, B. Stamm, E. Cances, Y. Maday, and B. Mennucci, J. Chem. Theory Comput., 9 (2013), pp. 3637--3648]. We prove here that the scalability results presented in [G. Ciaramella and M. J. Gander, SIAM J. Numer. Anal., 55 (2017), pp. 1330--1356] for a simplified rectangular geometry also hold for realistic two-dimensional chains of circular subdomains. To do so, we first prove some characterization results for the solution of the Laplace equation in the unit disk. Then, using these combined with the maximum principle for harmonic functions, we obtain our convergence theorems for general configurations of molecules. Our convergence results reveal a further very unusual property of the Schwarz method in these simulations: starting from a certain critical overlap size, increasing the overlap further actually decreases the performance of the Schwarz method, in strong contrast to classical Schwarz theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.