Abstract

ABSTRACT We provide a generalized discussion on the dynamics of a spacecraft around the equal-mass binary asteroid (90) Antiope, under the influence of solar radiation pressure at the perihelion and aphelion distances of the asteroid from the Sun. The polyhedral shape of the components of this asteroid is used to accurately model the gravitational field. Five unstable equilibrium points are determined and classified into two cases that allow classifying of the motion associated with the target as always unstable. The dynamical effects of the mass ratio of our binary system are investigated. We tested massless particles initially located at the periapsis distance on the equatorial plane of the primary of our binary asteroid. Bounded orbits around our system are not found for the longitudes λ ∈ {60, 90, 120, 240, 270, 300}. We also discuss the orbital dynamics in the full potential field of (90) Antiope. The tested motions are mainly dominated by the binary’s gravitational field; no significant effects of the SRP are detected. For λ = 180°, less perturbed orbits are identified between 420 and 700 km from the centre of the system, that corresponds to orbits with Δa < 30 km and Δe < 0.15. All the orbits with initial periapsis distance smaller than 350 km either collide with components of our asteroid or escape from the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.