Abstract

When addressing the problem of state estimation in sensor networks, the effects of communications on estimator performance are often neglected. High accuracy requires a high sampling rate, but this leads to higher channel load and longer delays, which in turn worsens estimation performance. This paper studies the problem of determining the optimal sampling rate for state estimation in sensor networks from a theoretical perspective that takes into account traffic generation, a model of network behaviour and the effect of delays. Some theoretical results about Riccati and Lyapunov equations applied to sampled systems are derived, and a solution was obtained for the ideal case of perfect sensor information. This result is also interesting for non-ideal sensors, as in some cases it works as an upper bound of the optimisation solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.