Abstract

Angiomyolipomas are benign mesenchymal tumours of smooth muscle, blood vessels and fat which occur sporadically or associated with tuberous sclerosis and lymphangioleiomyomatosis (LAM), a rare cystic lung disease. Angiomyolipoma and LAM are caused by loss of function of either the tuberous sclerosis-1 or -2 genes resulting in activation of p70S6kinase (S6K1) and uncontrolled cellular proliferation. LAM and angiomyolipoma can be exacerbated by oestrogens but how this occurs is not understood. To address this question, we created a xenograft tumour system in nude mice using immortalised angiomyolipoma cells. Angiomyolipoma xenografts had active S6K1, p38, p42/44 MAPK and Akt; they grew more rapidly and had greater Akt phosphorylation after oestrogen treatment of tumour-bearing mice. Transcriptional profiling showed oestrogen induced 300 genes including extracellular matrix proteins, proteases, cell cycle regulatory proteins and growth factors including platelet derived growth factor-C (PDGF-C). Biologically active PDGF-C was produced by primary angiomyolipoma cells in culture and PDGF-C protein was present in the neoplastic smooth muscle cells of 5/5 human angiomyolipoma and 4/5 LAM tissues examined by immunohistochemistry. These findings suggest that the response to oestrogen in this model is mediated by activation of Akt and transcriptional events. This model may prove useful for studying the biology and effect of drugs on angiomyolipoma and diseases related to TSC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.