Abstract

In this paper, the polarized neutron structure function [Formula: see text] in the [Formula: see text] nucleus is investigated and an analytical solution based on the Laplace transform method for [Formula: see text] is presented. It is shown that the neutron spin structure function can be extracted directly from the polarized nuclear structure function of [Formula: see text]. The nuclear corrections due to the Fermi motion of the nucleons as well as the binding energy considerations are taken into account within the framework of the convolution approach and the polarized structure function of [Formula: see text] nucleus is expressed in terms of the spin structure functions of nucleons and the light-cone momentum distribution of the constituent nucleons. Then, the numerical results for [Formula: see text] are compared with experimental data of the SMC and HERMES collaborations. We found that there is an overall good agreement between the theory and experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.