Abstract

The object of research is G-network with positive customers and signals of multiple classes. The present paper describes an analysis of this network at a non-stationary regime, also provided a description of method for finding non-stationary state probabilities.At the beginning of the article, a description of the network with positive customers and signals is given. A signal when entering the system destroys a positive customer of its type or moves the customer of its type to another system. Streams of positive customers and signals arriving to each of the network systems are independent. Selection of positive customers of all classes for service – randomly. For non-stationary state probabilities of the network, the system of Kolmogorov difference-differential equations (DDE) has been derived. It is solved by a modified method of successive approximations, combined with the method of series. The convergence of successive approximations with time has been proved to the stationary distribution of probabilities, the form of which is indicated in the article, and the sequence of approximations converges to the unique solution of the DDE system. Any successive approximation is representable in the form of a convergent power series with an infinite radius of convergence, the coefficients of which satisfy recurrence relations, which is convenient for computer calculations.The obtained results can be applied for modeling behavior of computer viruses and attack in computer systems and networks, for example, as model impact of some file viruses on server resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.