Abstract

We consider an Mx/G/1 queueing system with N-policy and multiple vacations. As soon as the system empties, the server leaves for a vacation of random length V. When he returns, if the queue length is greater than or equal to a predetermined value N(threshold), the server immediately begins to serve the customers. If he finds less than N customers, he leaves for another vacation and so on until he finally finds at least N customers. We obtain the system size distribution and show that the system size decomposes into three random variables one of which is the system size of ordinary Mx/G/1 queue. The interpretation of the other random variables will be provided. We also derive the queue waiting time distribution and other performance measures. Finally we derive a condition under which the optimal stationary operating policy is achieved under a linear cost structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.