Abstract
This article presents the results of investigations of the morphology and structure of carbon deposit formed as a result of ethanol decomposition at 500 °C, 600 °C, and 700 °C without water vapour and with water vapour (0.35 and 1.1% by volume). scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) observations as well as energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), and Raman spectroscopic analyses allowed for a comprehensive characterization of the morphology and structure of cylindrical carbon nanostructures present on the surface of the Ni3Al catalyst. Depending on the reaction mixture composition (i.e., water vapour content) and decomposition temperature, various carbon nanotubes/carbon nanofibres (CNTs/CNFs) were observed: multiwalled carbon nanotubes, herringbone-type multiwall carbon nanotubes, cylindrical carbon nanofibers, platelet carbon nanofibers, and helical carbon nanotubes/nanofibres. The discussed carbon nanostructures exhibited nickel nanoparticles at the ends and in the middle part of the carbon nanostructures as catalytically active centres for efficient ethanol decomposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.