Abstract

A liquid Ge0.25Si0.75 alloy was simulated by means of the molecular dynamics method, using the Stillinger–Weber potential. The influence of precise parametrization of the three-body term in the unlike-species interactions on the alloy structure was studied and found to be significant. Differences in the parameters of only a few percent have led to marked changes in the pair correlation functions, angular distribution functions and diffusion coefficients. A separation of the system into Ge- and Si-rich regions was observed for two parametrizations, while it was absent for the other three.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.