Abstract

Pathogen Reduction Technologies (PRTs) are broad spectrum nucleic acid replication-blocking antimicrobial treatments designed to mitigate risk of infection from blood product transfusions. Thiazole Orange (TO), a photosensitizing nucleic acid dye, was previously shown to photoinactivate several types of bacterial and viral pathogens in RBC suspensions without adverse effects on function. In this report we extended TO treatment to platelet concentrates (PCs) to see whether it is compatible with in vitro platelet functions also, and thus, could serve as a candidate technology for further evaluation. PCs were treated with TO, and an effective treatment dose for inactivation of Staphylococci was identified. Platelet function and physiology were then evaluated by various assays in vitro. Phototreatment of PCs yielded significant reduction (≥4-log) in Staphylococci at TO concentrations ≥20 μM. However, treatment with TO reduced aggregation response to collagen over time, and platelets became unresponsive by 24 hours post-treatment (from >80% at 1 h to 0% at 24 h). TO treatment also significantly increased CD62P expression (<1% CD62P+ for untreated and >50% for TO treated at 1 h) and induced apoptosis in platelets (<1% Annexin V+ for untreated and >50% for TO treated at 1 h) and damaged mitochondrial DNA. A mitochondria-targeted antioxidant and reactive oxygen species (ROS) scavenger Mito-Tempo mitigated these adverse effects. The results demonstrate that TO compromises mitochondria and perturbs internal signaling that activates platelets and triggers apoptosis. This study illustrates that protecting platelet mitochondria and its functions should be a fundamental consideration in selecting a PRT for transfusion units containing platelets, such as PCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.